Конструктивный расчёт ректификационной колонны. Определение основных геометрических размеров ректификационной колонны Диаметры ректификационных колонн гост

ГОСТ 12011-76*

Группа Г47

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОЛОННЫ РЕКТИФИКАЦИОННЫЕ С КОЛПАЧКОВЫМИ ТАРЕЛКАМИ ИЗ МЕДИ

Типы, основные параметры и размеры

Rectifying column with copper cap trays. Types, main characteristics and dimensions

Дата введения 1977-07-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 03.06.76* N 1873 дата введения установлена 01.07.77
_______________
* В издании ГОСТ 12011-76 (М.: Издательство стандартов, 1976) приведена следующая информация: "Постановлением Государственного комитета стандартов Совета Министров СССР от 3 августа 1976 г. N 1873 срок действия установлен с 01.07.1977 г. до 01.07.1982 г". - Примечание изготовителя базы данных.

Ограничение срока действия снято Постановлением Госстандарта СССР от 27.06.91 N 1125

ВЗАМЕН ГОСТ 12011-66

* ПЕРЕИЗДАНИЕ (декабрь 1998 г.) с Изменением N 1 , утвержденным в апреле 1982 г. (ИУС 7-82)

1. Настоящий стандарт распространяется на ректификационные колонны с колпачковыми тарелками из меди, предназначенные для разделения смесей жидких компонентов в пределах температур от 273 до 523 К (от 0 до 250 °С) и при условном давлении не более 0,07 МПа (0,7 кгс/см), применяемые в пищевой (спиртовой), лесохимической и других отраслях промышленности.

2. Колонны должны изготовляться следующих типов:

1 - с многоколпачковыми тарелками;

2 - с одноколпачковыми тарелками.

3. Основные параметры и размеры колонн должны соответствовать указанным на черт.1 и 2 и в табл.1 и 2.

Черт.1. Основные параметры и размеры колонн. Тип 1

Тип 1

1 - верхняя царга; 2 - тарелка; 3 - промежуточная царга; 4 - нижняя царга

Таблица 1

Высота при числе тарелок в промежуточной царге

800; 900; 1000; 1200

1400; 1500; 1600; 1800; 2000

Пример условного обозначения колонны типа 1 диаметром 1000 мм, с 5 тарелками в промежуточной царге и расстоянием между тарелками 170 мм:

Колонна 1-1000-5-170 ТУ ...

Черт.2. Основные параметры и размеры колонн. Тип 2

Тип 2

1 - верхняя царга; 2 - промежуточная царга; 3 - тарелка; 4 - нижняя царга

Черт.2

Таблица 2

Число тарелок в промежуточной царге


Пример условного обозначения колонны типа 2 диаметром 1000 мм, с 6 тарелками в промежуточной царге и расстоянием между тарелками 240 мм:

Колонна 2-1000-6-240 ТУ ...

(Измененная редакция, Изм. N 1).

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: ИПК Издательство стандартов, 1999

Рано или поздно почти каждый любитель самодельного алкоголя задумывается о приобретении или изготовлении ректификационной колонны (РК) – устройства для получения чистого спирта. Начинать нужно с комплексного расчета базовых параметров: мощности, высоты, диаметра царги, объема куба и т.д. Эта информация будет полезна как желающим сделать все элементы своими руками, так и собравшимся купить готовую ректификационную колонну (поможет определиться с выбором и проверить продавца). Не затрагивая конструктивных особенностей отдельных узлов, мы рассмотрим общие принципы построения сбалансированной системы для ректификации в домашних условиях.

Схема работы колонны

Характеристики трубы (царги) и насадки

Материал. Труба во многом определяет параметры ректификационной колонны и требования ко всем узлам аппарата. Материалом для изготовления царги является хромоникелевая нержавеющая сталь – «пищевая» нержавейка.

Благодаря химической нейтральности пищевая нержавеющая сталь не оказывает воздействия на состав продукта, что и требуется. На спирт перегоняют сырец из сахарной браги или отходы дистилляции («головы» и «хвосты»), поэтому главной целью ректификации является максимальная очистка выхода от примесей, а не изменение органолептических свойств спирта в ту или иную сторону. Использовать медь в классических ректификационных колоннах неуместно, поскольку этот материал слегка изменяет химический состав напитка и подходит для производства дистиллятора (обычного самогонного аппарата) или бражной колонны (частный случай ректификации).


Разобранная труба колонны с установленной насадкой в одной из царг

Толщина. Царгу делают из нержавеющей трубы с толщиной стенки 1-1,5 мм. Более толстая стенка не нужна, так как это приведет к удорожанию и утяжелению конструкции без получения каких-либо преимуществ.

Параметры насадки. Говорить о характеристиках колонны без привязки к насадке не корректно. При ректификации в домашних условиях используют насадки с площадью контактной поверхности от 1,5 до 4 кв. м/литр. С увеличением площади контактной поверхности возрастает и разделяющая способность, но падает производительность. Уменьшение площади приводит к снижению разделяющей и укрепляющей способности.

Производительность колонны вначале растет, но потом для поддержания крепости выхода оператор вынужден понижать скорость отбора. Это значит, что существует некий оптимальный размер насадки, который зависит от диаметра колонны и позволят достичь наилучшего сочетания параметров.

Размеры спирально-призматической насадки (СПН) должны быть меньше внутреннего диаметра колонны примерно в 12-15 раз. Для диаметра трубы 50 мм – 3.5х3.5х0.25 мм, для 40 – 3х3х0.25 мм, а для 32 и 28 – 2х2х0.25 мм.

В зависимости от поставленных задач целесообразно использовать разные насадки. Например, при получении укрепленных дистиллятов часто применяют медные кольца диаметром и высотой 10 мм. Понятно, что в этом случае целью является не разделяющая и укрепляющая возможность системы, а совершенно другой критерий – каталитическая способность меди устранять из спирта сернистые соединения.


Варианты спирально-призматических насадок

Не стоит ограничивать арсенал одной, пусть даже самой лучшей насадкой, таких просто нет. Есть наиболее подходящие для решения каждой конкретной задачи.

Даже небольшое изменение диаметра колонны серьезно влияет на параметры. Для оценки достаточно помнить, что номинальные мощность (Вт) и производительность (мл/час) численно равны площади поперечного сечения колонны (кв. мм), а значит, пропорциональны квадрату диаметра. Обращайте на это внимание при выборе царги, всегда считайте внутренний диаметр и по нему сравнивайте варианты.

Зависимость мощности от диаметра трубы

Высота трубы. Для обеспечения хорошей удерживающей и разделительной способности, не зависимо от диаметра, высота ректификационной колонны должна быть от 1 до 1,5 м. Если меньше – не хватит места для накопленных в ходе работы сивушных масел, в результате сивуха начнет прорываться в отбор. Еще один недостаток – головы будут нечетко разделяться на фракции. Если высота трубы больше – это не приведет к существенному улучшению разделяющей и сдерживающей способности системы, но увеличит время перегона, а также количество «голов» и «подголовников».Другими словами, с увеличением высоты трубы прибавка к разделяющей способности ректификационной колонны на каждый дополнительный сантиметр снижается. Эффект от увеличения трубы с 50 см до 60 см на порядок выше, чем со 140 см до 150 см.

Объем куба для ректификационной колонны

Чтобы повысить выход качественного спирта, но не допустить переполнения сивухой колонны, навалку (наполнение) спирта-сырца в кубе ограничивают в диапазоне 10-20 объемов насадки. Для колонн высотой в 1,5 м и диаметром 50 мм – 30-60 л, 40 мм – 17-34 л, 32 мм – 10-20 л, 28 мм – 7-14 л.

С учетом заполнения куба на 2/3 объема, для колонны внутренним диаметром царги 50 мм подойдет 40-80 литровая емкость, для 40 мм – 30-50 литровая, для 32 мм – 20-30 литровый куб, а для 28 мм – скороварка.

При использовании куба объемом ближе к нижней границе рекомендованного диапазона можно смело убрать одну царгу и уменьшить высоту до 1-1,2 метра. В результате сивухи будет относительно мало для прорыва в отбор, а вот объем «подголовников» заметно уменьшится.

Источник и мощность нагрева колонны

Тип плиты. Самогонное прошлое не дает покоя многим новичкам, которые считают, что если раньше использовали для нагрева самогонного аппарата газовую, индукционную или обычную электрическую плиту, то можно оставить этот источник и для колонны.

Процесс ректификации существенно отличается от дистилляции, всё намного сложнее и костер не подойдет. Нужно обеспечить плавную регулировку и стабильность подаваемой мощности нагрева.

Электроплитки, работающие по терморегулятору в режиме старт-стоп, не используются, потому что как только произойдет кратковременное отключение питания, пар перестанет идти в колонну, а флегма рухнет в куб. В таком случае придется начать ректификацию заново – с работы колонны на себя и отбора «голов».

Индукционная плита – крайне грубый аппарат со ступенчатым изменением мощности по 100 -200 Вт, а при ректификации нужно менять мощность плавно, буквально по 5-10 Вт. Да и стабилизировать нагрев независимо от колебания напряжения на входе вряд ли получится.

Газовая плита при залитом в куб 40-процентном спирте-сырце и 96-градусоном продукте на выходе представляет смертельную опасность, не говоря уже о колебании температуры нагрева.

Оптимальное решение – врезать в куб колонны тэн нужной мощности, а для регулировки использовать реле со стабилизацией выходного напряжения, например, РМ-2 16А. Можно взять и аналоги. Главное получить на выходе стабилизированное напряжение и возможность плавно менять температуру нагрева по 5-10 Вт.

Подаваемая мощность. Чтобы нагреть куб за приемлемое время, нужно исходить из мощности 1 кВт на 10 литров спирта-сырца. Значит, для 50 л куба, заполненного на 40 литров, требуется минимум 4 кВт, 40 л – 3 Квт, 30 л – 2-2.5 кВт, 20 л – 1.5 кВт.

При одном и том же объеме кубы могут быть низкими и широкими, узкими и высокими. Выбирая подходящую емкость, нужно учитывать, что зачастую куб используется не только для ректификации, но и при дистилляции, поэтому исходят из самых жестких условий, чтобы подводимая мощность не приводила к бурному пенообразованию с выбросами брызг из куба в паропровод.

Опытным путем установлено, что при глубине размещения тэна около 40-50 см нормальное кипение происходит в случае, если на 1 кв. см зеркала навалки приходится не более 4-5 Вт мощности. При уменьшении глубины допустимая мощность увеличивается, а при увеличении – уменьшается.

Есть и другие факторы, влияющие на характер кипения: плотность, вязкость и поверхностное натяжение жидкости. Бывает, что выбросы происходят в конце перегонки браги, когда увеличивается плотность. Поэтому вести процесс ректификации на границе дозволенного диапазона всегда чревато неприятностями.

Распространенные цилиндрические кубы имеют диаметр 26, 32, 40 см. Исходя и допустимой мощности на площадь поверхности зеркала кубовой навалки 26 см куб, будет нормально работать при мощности нагрева до 2,5 кВт, для 30 см – 3.5 кВт, 40 см – 5 кВт.

Третьим фактором, определяющим мощность нагрева, является использование одной из царг колонны без насадки в качестве сухопарника для борьбы с брызгоуносом. Для этого нужно, чтобы скорость пара в трубе не превышала 1 м/с, при 2-3 м/с защитный эффект ослабевает, а при больших значениях пар будет гнать флегму вверх по трубе и забрасывать в отбор.

Формула для расчета скорости пара:

V = N * 750 / S (м/сек),

  • N – мощность, кВт;
  • 750 – парообразование (куб. см/сек кВт);
  • S – площадь поперечного сечения колонны (кв. мм).

Труба диаметром 50 мм справится с брызгоуносом при нагреве до 4 кВт, 40-42 мм – до 3 кВт, 38 – до 2 кВт, 32 – до 1,5 кВт.

Исходя из вышеперечисленных соображений, выбираем объем, размеры куба, мощность нагрева и дистилляции. Все эти параметры согласованы с диаметром и высотой колонны.

Расчет параметров дефлегматора ректификационной колонны

Мощность дефлегматора определяется в зависимости от типа ректификационной колонны. Если строим колонну с жидкостным отбором или паровым ниже дефлегматора, то необходимая мощность должна быть не меньше номинальной мощности колонны. Обычно в этих случаях в качестве конденсатора применяют холодильник Димрота с утилизационной мощностью 4-5 Ватт на 1 кв. см поверхности.

Если колонна с отбором по пару выше дефлегматора, то расчетная мощность составляет 2/3 от номинальной. В этом случае можно применить Димрот или «рубашечник». Утилизационная мощность рубашечника ниже, чем у димрота и составляет около 2 Ватт на квадратный сантиметр.


Пример холодильника Димрота для колонны

Далее все просто: номинальную мощность делим на утилизационную. Например, для колонны с внутренним диаметром 50 мм: 1950 / 5= 390 кв. см площади Димрота или 975 кв. см «рубашечника». Значит, холодильник Димрот можно сделать из трубки 6х1 мм длинной 487 / (0.6 * 3.14) = 2.58 см для первого варианта, с учетом коэффициента запаса 3 метра. Для второго варианта умножаем на две трети: 258 * 2 / 3 = 172 см, с учетом коэффициента запаса 2 метра.

Рубашечник для колонны 52 х 1 – 975 / 5.2 / 3.14 = 59 см * 2/3 = 39 см. Но это для помещений с высокими потолками.


«Рубашечник»

Расчет прямоточного холодильника

Если прямоточник применяется как доохладитель в ректификационной колонне с жидкостным отбором, то выбирают самый маленький и компактный вариант. Достаточно мощности в 30-40% от номинальной мощности колонны.

Изготавливают прямоточный холодильник без спирали в зазоре между рубашкой и внутренней трубой, потом запускают отбор в рубашку, а охлаждающую воду подают по центральной трубе. В этом случае рубашку наваривают на трубу подачи воды в дефлегматор. Это мелкий «карандашик» длинной около 30 см.

Но если один и тот же прямоточник используется как при дистилляции, так и при ректификации, являясь универсальным узлом, исходят не из потребности РК, а из максимальной мощности нагрева при дистилляции.

Для создания турбулентного потока пара в холодильнике, позволяющего обеспечить интенсивность теплопередачи не меньше 10 Ватт/кв. см, необходимо обеспечить скорость пара около 10-20 м/с.

Диапазон возможных диаметров достаточно широк. Минимальный диаметр определяется из условий не создания большого избыточного давления в кубе (не более 50 мм вод столба), а максимальный расчетом числа Рейнольдса, исходя из минимальной скорости и максимального коэффициента кинематической вязкости паров.


Возможная конструкция прямоточного холодильника

Чтобы не вдаваться в ненужные подробности, приведем самое распространенное определение: «Для того, чтобы в трубе поддерживался турбулентный режим движения пара, достаточно, чтобы внутренний диаметр (в миллиметрах) был не больше 6-кратной мощности нагрева (в киловаттах)».

Для предотвращения завоздушивания водяной рубашки необходимо поддерживать линейную скорость воды не ниже 11 см/с, но чрезмерное увеличение скорости потребует большого давления в водопроводе. Поэтому оптимальным считается диапазон от 12 до 20 см/с.

Чтобы сконденсировать пар и охладить конденсат до приемлемой температуры, нужно подавать воду при 20°C в объеме около 4.8 куб см/с (17 литров в час) на каждый киловатт подводимой мощности. При этом вода нагреется на 50 градусов – до 70°C. Естественно, зимой воды понадобится меньше, а при использовании автономных систем охлаждения, примерно в полтора раза больше.

На основании предыдущих данных можно рассчитать площадь поперечного сечения кольцевого зазора и внутренний диаметр рубашки. Нужно учитывать и доступный сортамент труб. Расчеты и практика показали, что зазор в 1-1.5 мм вполне достаточен для соблюдения всех необходимых условий. Этому соответствуют пары труб: 10х1 – 14х1, 12х1 – 16х1, 14х1 – 18х1, 16х1 – 20х1 и 20х1 – 25х1.5, которые перекрывают весь диапазон мощностей, применяемых в домашних условиях.

Есть еще одна немаловажная деталь прямоточника – спираль, навитая на паровую трубу. Делается такая спираль из проволоки диаметром, обеспечивающим зазор в 0.2-0.3 мм до внутренней поверхности рубашки. Навивается с шагом равным 2-3 диаметрам паровой трубы. Основное предназначение – центрирование паровой трубы, в которой при работе температура выше, чем в трубе рубашки. Это значит, что в следствии теплового расширения паровая труба удлиняется и изгибается, прислоняясь к рубашке, возникают мертвые зоны, не омываемые водой охлаждения, в результате эффективность холодильника резко падает. Дополнительными плюсами навивки спирали являются удлинение пути и создание турбулентности охлаждающего потока воды.

Грамотно выполненный прямоточник может утилизировать до 15 Ватт /кв. см площади теплообмена, что подтверждено опытным путем. Для определения длины охлаждаемой части прямоточника воспользуемся номинальной мощностью в 10 Вт /кв. см (100 кв. см/кВт).

Необходимая площадь теплообмена равна мощности нагрева в киловаттах, умноженной на 100:

S = P * 100 (кв. см).

Длина внешней окружности паровой трубы:

Lокр = 3.14 * D.

Высота рубашки охлаждения:

H = S / Lокр.

Общая формула расчета:

H = 3183 * P / D (мощность в кВт, высота и внешний диаметр паровой трубы в миллиметрах).

Пример расчета прямоточника

Мощность нагрева – 2 кВт.

Возможно применение труб 12х1 и 14х1.

Площади сечения – 78,5 и 113 кв. мм.

Объем пара – 750 * 2=1500 куб. см /с.

Скорости пара в трубах: 19,1 и 13,2 м/с.

Труба 14х1 выглядит предпочтительней, так как позволяет иметь запас по мощности, оставаясь в рекомендованном диапазоне скорости пара.

Парная труба для рубашки – 18х1, кольцевой зазор составит 1 мм.

Скорость подачи воды: 4,8 * 2= 9.6 см3/с.

Площадь кольцевого зазора – 3.14 / 4 * (16 * 16 – 14 * 14) = 47.1 кв. мм = 0,471 кв. см.

Линейная скорость – 9.6 / 0.471 = 20 см/с – значение остается в рекомендованных пределах.

Если бы кольцевой зазор был 1,5 мм – 13 см/с. Если 2 мм, то линейная скорость упала бы до 9.6 см/с и пришлось бы подавать воду выше номинального объема, исключительно для того, чтобы не завоздушивался холодильник, – бессмысленная трата денег.

Высота рубашки – 3183 * 2 / 14 = 454 мм или 45 см. Коэффициент запаса не нужен, все учтено.

Итог: 14х1-18х1 с высотой охлаждаемой части 45 см, номинальный расход воды – 9.6 куб. см/с или 34.5 литра в час.

При номинальной мощности 2 кВт нагрева холодильник будет выдавать 4 литра спирта в час с хорошим запасом.

Эффективный и сбалансированный прямоточник при дистилляции должен иметь соотношения скорости отбора к мощности нагрева и расходу воды на охлаждение 1 литр/час – 0,5 кВт – 10 литров/час. Если мощность выше, будут большие теплопотери, малая – полезная мощность нагрева снизится. Если расход воды выше, прямоточник имеет неэффективную конструкцию.

Ректификационную колонну можно использовать в качестве бражной. Оборудование для бражных колонн имеет свои особенности, но вторая перегонка отличается в основном технологией. Для первой перегонки особенностей больше и отдельные узлы могут оказаться не применимыми, но это тема для отдельного разговора.

Исходя из реальных домашних потребностей и существующего асортимента труб, рассчитаем по приведенной методике типовые варианты ректификационной колонны.

P.S. Выражаем благодарность за систематизацию материала и помощь в подготовке статьи пользователю нашего форума .

Рассчитаем диаметры основных штуцеров, через которые проходят известные по величине материальные потоки, а именно: штуцер подачи исходной смеси, штуцеры выхода паров из колонны, штуцер выхода кубового остатка.

Независимо от назначения штуцера его диаметр рассчитывают из уравнения расхода:

где V - объёмный расход среды через штуцер, м 3 /с; - скорость движения среды в штуцере, м/с;

Штуцер подачи исходной смеси

Принимая XF =1,5м/с, получим:

Скорость движения питательной смеси в штуцере:

Штуцер подачи флегмы:

Принимаем XR =1,0м/с,

Стандартный размер трубы для изготовления штуцера по ГОСТ 9941-62, 70x3 (внутренний диаметр d вн =70-3·2=64мм).

Скорость движения флегмы в штуцере:

Штуцер выхода кубового остатка:

плотность воды.

Принимаем XW =0,5м/с,

Стандартный размер трубы для изготовления штуцера по ГОСТ 9941-62, 95x4 (внутренний диаметр d вн =95-4·2=87мм=0,087м)

Скорость движения кубового остатка в штуцере:

Штуцер выхода паров из колонны:

Определяем среднюю плотность пара для верхней и нижней части колонны:

Принимаем у =25 м/с.

Выбираем стальную электросварную прямошовную ГОСТ10704-81 630х16, внутренний диаметр которой равен d вн =630-16·2=598 мм. Следовательно, скорость паров в штуцере:

Для всех штуцеров выбираем стандартные фланцы тип 1. Для штуцера подачи исходной смеси и флегмы выбираем фланец (ГОСТ 1235-54) с основными размерами d в =72мм, D 1 =130мм, D=160мм, b=11мм, D 2 =110мм, h=3мм, d=12мм, n=8шт. Фланец штуцера кубового остатка d в =97мм, D 1 =160мм, D=195мм, b=22мм, D 2 =138мм, h=4мм, d=16мм, n=8шт. Фланец штуцера для выхода паров из колонны d в =634мм, D 1 =740мм, D=770мм, b=11мм, d=24мм, n=20шт, (ГОСТ1255-54). Уплотнительный материал принимаем паронит марки ПОН (ГОСТ481-80).

Гидравлический расчёт

Цель гидравлического расчёта - определение величины сопротивлений различных участков трубопроводов и теплообменника и подбор насоса, обеспечивающего заданную подачу и рассчитанный напор при перекачке этанола.

Различают два вида сопротивлений (потерь напора): сопротивления трения (по длине) h 1 и местные сопротивления h мс.

Для расчёта потерь напора по длине пользуются формулой Дарси-Вейсбаха.

где л - гидравлический коэффициент трения;

l - длина трубопровода или тракта по которому протекает теплоноситель, м;

d - диаметр трубопровода, м;

Скоростной коэффициент напора, м.

Для расчёта потерь напора в местных сопротивлениях применяется формула Вейсбаха:

где о - коэффициент местных сопротивлений;

Скоростной напор за местным сопротивлением, м.

Методика тепло – и массообменного расчета колонных аппаратов

Общая схема расчета колонных аппаратов

Целью расчета массообменного аппарата является определение конструктивных размеров, т.е. высоты и диаметра колонны, гидромеханических и экономических показателей ее работы.

Для расчета задано: 1) тип аппарата; 2) разделяемая смесь и поглотитель (абсорбент, экстрагент или растворитель, адсорбент); 3) производительность; 4) концентрации компонентов на входе и выходе из аппарата.

Требуется определить: 1) физические параметры смеси; 2) расход поглотителя или веса чистых компонентов (уравнение материального баланса); 3) движущую силу процесса; 4) коэффициенты массоотдачи и массопередачи; 5) построить кривую равновесия, рабочую линию и число ступеней изменения концентрации; 6) поверхность фазового контакта а конструктивные размеры; 7) количество подводимого или отводимого тепла (тепловой баланс); 8) гидродинамическое сопротивление аппарата; 9) механическую прочность и устойчивость; 10) экономические показатели работы колонны.

Основными конструктивными размерами являются ее диаметр и высота H . Эти величины взаимосвязаны, так как обе зависят от скорости пара в свободном сечении колонны.Диаметр колонны определяется в зависимости от скорости и количества поднимающихся в колонне паров

где – скорость пара, отнесенная к полному поперечному сечению колонны, м/с; – секундный объем поднимающихся паров, м 3 /с.

где – количество поднимающихся по колонне паров, кмоль/ч; средняя температура пара, град; – масса получаемого дистиллята из колонны; R– флегмовое число.

Если масса дистиллята выражена в кг/с, то объемный расход проходящего через колонну пара (м 3 /с)

Допустимая оптимальная скорость пара (м/с) в колонне

где G– коэффициент, зависящий от конструкции тарелок, расстояния между ними, давления и нагрузки колонны по жидкости (определяется по графику); – плотность жидкости, кг/м 3 ; – плотность пара, кг/м 3 .

Если ,то .

Скорость пара в колонне можно также определить по другим формулам, приведенным в литературе. Подсчитав диаметр колонны, подбирают по нормалям и определяют конструктивные размеры основных элементов колонны и тарелки, количество паровых патрубков, размеры колпачка, диаметр и количество сливных труб. Диаметр парового патрубка d = 50, 75, 100, 125, 150 мм. Задавшись диаметром d , определяют количество колпачков на тарелке. Сечение всех патрубков должно составлять 10 % сечения колонны. Тогда количество колпачков патрубков определяется из уравнения



Возвышение колпачка над паровым патрубком . Диаметр колпачка определяется из условия равенства скорости пара в паровом патрубке и кольцевом зазоре между колпачком и патрубком (м):

где d – толщина стенки патрубка, м. Возвышение уровня жидкости над верхним уровнем прорезей колпачков мм. Площадь сечения прорезей колпачка составляет 75 % площади сечения парового патрубка, т.е.

Принимают следующие размеры прямоугольных прорезей: ширина мм, высота мм, расстояние между прорезями мм. Минимальный зазор между колпачками равен 35 мм.

Диаметр сливного патрубка (м)

где – среднее количество стекающей жидкости, кг/с; – скорость жидкости в сливном патрубке, м/с; – плотность стекающей жидкости, кг/м 3 ; z = 1, 2, 4, 6, 8 – число сливных патрубков (зависит от и ).

Высота колонны зависит от скорости процесса массопередачи и определяется несколькими способами. Для барботажных колонн применяются в основном два способа.

Первый способ . Число тарелок определяется путем построения ступенчатой линии между кинетической кривой и рабочей линией.Высота тарельчатой колонны зависит от числа тарелок и расстояния между ними h , которое выбирается на основании опытных данных

Второй способ . Число действительных тарелок.

где – число ступеней изменения концентраций (теоретических тарелок, которое определяется графическим построением ломаной (ступенчатой) линии между кривой равновесия и рабочими линиями по диаграмме Y–X; - средний к.п.д. тарелки. Тогда

где h – расстояние между тарелками (в зависимости от скорости пара и давления в колонне принимается таким, чтобы свести к минимуму механический унос части жидкости парами), м.Для выбора h в зависимости от диаметра колонны можно использовать следующие данные: диаметр колонны, м – 0 - 0,6; 0,6 - 1,2; 1,2 - 1,8; 1,8 и более; расстояние между тарелками h, мм– 152, 305, 46О, 610. В ректификационных колоннах с круглыми колпачками, работающих под атмосферным давлением, расстояние между тарелками h = 250, 300, 350, 400, 450 мм. Обычно значение h находится в пределах 0,1 - 0,6 м.Для насадочных колонн высота насадки H также определяется двумя способами.

Первый способ . Требуемая высота слоя насадки

где , – число единиц переноса (определяется графическим построением ступеней, соответствующих единице переноса, если линия равновесия является прямой или близка к ней, то определяется аналитически:

где и – начальная и конечная концентрации низкокипящего компонента в паровой фазе; –равновесная концентрация низкокипящего компонента в паровой фазе (определяется по графику кривой равновесия).

Движущую силу можно выразить в единицах давления (упругости паров).

Высота единицы переноса (м)

где: – расход пара, кг/с; – средний коэффициент массопередачи, кг/(м 2 с); S – поперечное сечение колонны, м 2 ; s н – удельная смоченная поверхность насадки, м 2 /м 3 . Для определения коэффициента массопередачи используют диффузионный критерий Нуссельта– высота слоя насадки, эквивалентного одной ступени изменения концентрации или одной теоретической тарелке.Практически высота, эквивалентная одной теоретической тарелке, зависит от вида насадки и скорости пара (табл.1).

Таблица.1 - Зависимость высоты от вида насадки и скорости пара.

Поделиться